PENGERTIAN
Pada garis berarah dari titik A ke titik B di R 3 mempunyai panjang tertentu dinyatakan sebagai vektor. Vektor dapat dinotasikan dengan :
Atau dapat juga dinyatakan sebagai :
Dimana
2. Panjang Vektor
Jika titik A (x1,y1,z1) dan B (x2,y2,z2) maka vektor AB adalah :
3. Vektor Satuan
Vektor satuan adalah adalah vektor yang panjangnya satu satuan. Jika vektor
4. Operasi Penjumlahan, Pengurangan dan Perkalian Vektor dangan Skalar
a. Penjumlahan atau pengurangan vektor
Contoh :
Diketahui vektor
Jawab :
b. Perkalian Skalar dengan vektor
5. Rumus Perbandingan, Perkalian Skalar Proyeksi dan Perkalian Silang Vektor
a. Perkalian Skalar
b. Cross Product
d. Rumus Pembagian
Contoh : Diketahui titik A (-4, 1, 3 ), B (6, -4, 3) dan C (4, 5, -1) Titik R membagi AB sehingga 2AR = 3RB, vektor yang mewakili
Jawab :
RUMUS TRANSRORMASI
TRANSFORMASI GEOMETRI
1. Pengertian Transformasi Transformasi T dibidang adalah suatu pemetaan titik pada suatu bidang ke himpunan titik pada bidang yang sama.
Jenis-jenis transformasi yang dapat dilakukan antara lain :
2. Translasi dan Operasinya
Translasi (pergeseran) adalah pemindahan suatu objek sepanjang garis lurus dengan arah dan jarak tertentu.
Jika translasi
memetakan titik P (x, y) ke titik P’(x’, y’) maka x’ = x + a dan y’ = y + b atay P’ (x + a, y + b ) ditulis dalam bentuk :
Contoh : Tentukan koordinat bayangan titik A (-3, 4) oleh translasi
Jawab :
3. Refleksi (Pencerminan)

Dengan P sebagai parameter dan
Rumus ini dinyatakan sebagai:
untuk n = 0, 1, 2, …. ,n
Dengan P sebagai parameter dan
Jenis-jenis transformasi yang dapat dilakukan antara lain :
- Translasi (Pergeseran)
- Refleksi (Pencerminan)
- Rotasi (Perputaran)
- Dilatasi (Perkalian)
2. Translasi dan Operasinya
Translasi (pergeseran) adalah pemindahan suatu objek sepanjang garis lurus dengan arah dan jarak tertentu.
Jika translasi
Contoh : Tentukan koordinat bayangan titik A (-3, 4) oleh translasi
Jawab :
Jawab :
A’ = ( -3 + 3, 4 + 6)
A’ = (0, 10)
3. Refleksi (Pencerminan)
a. Pencerminan terhadap sumbu x
Matriks percerminan :
b. Pencerminan Terhadap sumbu y
Matriks Pencerminan:
c. Pencerminan terhadap garis y = x
d. Pencerminan terhadap garis y = -x
Matriks Pencerminan:
e. Pencerminan terhadap garis x = h
Sehingga:
f. Pencerminan terhadap garis y=k
Sehingga:
g. Pencerminan terhadap titik asal O (0, 0)
Sehingga:
h. Pencerminan terhadap garis y = mx dimana m = tan q
Contoh :
Jawab :
Ambil sembarang titik pada garis y = 2x – 5, misalnya (x, y) dan titik bayangan oleh translasi
adalah (x’, y’) sehingga ditulis 
Atau
Persamaan (1) dan (2) disubtitusikan pada persamaan garis semula, sehingga :
y = 2x – 5
y’ + 2 = 2 (x’- 3) – 5
y’ = 2x’ – 6 – 5 – 2
y’ = 2x’ – 13
PROGRAM LINEAR
Pertidaksamaan linier dengan ditentukan daerah penyelesaiannya
Sebelum kita membahas lebih lanjut kita harus mengetahui terlebih dahulu tentang perstidaksamaan linier dan juga cara menentukan daerah penyelsaian ( himpunan penyelesaian). Petidasamaan linier adalah kalimat terbuka yang menggunakan tanda <, >, , dan >
Sistem pertidaksamaan linier dengan dua variable ditentukan daerah penyelesaian.
Contoh 2 :
Menetukan Model Matematika Dari Soal Cerita ( Kalimat Verbal )
Model matematika adalah suatu cara penyelesaian masalah dengan cara mengubah bentuk kalimat verbal menjadi suatu model yang selanjutnya diselesaikan dengan pendekatan matematika.
Contoh :
Seorang pembuat paku membuat jenis paku dari bahan yang tersedia yaitu 5,5 kg A dan 2 kg bahan B. Paku jenis I tiap buah memerlukan 200 gram bahan A dan 75 gram bahan B sedangkan paku jenis II tiap buah memerlukan 150 gram bahan jenis A dan 50 gram bahan jenis B.
Jika pengusaha menjual paku I dengan harga Rp 500,00 dan paku II dengan harga Rp 350,00 maka hitunglah berapa buah paku I dan paku II yang harus dibuat agar penghasilan pengusaha maksimum?
Menentukan Nilai Optimum dari Sistem Pertidaksamaan Linier. Garis Selidik dengan Prsamaan ax + by = k
Untuk menentukan nilai optimum,selain dengan mencari titik – titik yang koordinat – koordinatnya memenuhi syarat yang diberikan, dapat juga dilakukan dengan menggunakan garis – garis sejajar itu mempunyai persamaan ax + by = k ,dengan k R dan ax + by merupakan bentuk obyektif. Kerena garis – garis yang sejajar itu di gunakan untuk menyelidiki nilai optimum,maka garis – garis itu disebut garis selidik.Agar himpunan garis – garis sejajar ax + by = k mudah dilukis, maka mulailah dengan melukis garis yang melalui tttik pangkal , yaitu jika k = 0. Kemudian, garis – garis ax + by = k untuk k = 1,2,3,4, ……dilukis dengan penggaris.
RUMUS TRIGONOMETRI
A. Pengertian Trigonometri
Trigonometri terdiri dari sinus (sin), cosinus (cos), tangens ( tan), cotangens (cot), secan (sec) dan cosecan (cosec). Trigonometri merupakan nilai perbandingan yang didefinisikan pada koordinat kartesius atau segitiga siku-siku.
Trigonometri terdiri dari sinus (sin), cosinus (cos), tangens ( tan), cotangens (cot), secan (sec) dan cosecan (cosec). Trigonometri merupakan nilai perbandingan yang didefinisikan pada koordinat kartesius atau segitiga siku-siku.
Jika trigonometri didefinisikan dalam segitiga siku-siku a b c, maka definisinya adalah sebagai berikut:

B. Nilai Trigonometri untuk Sudut-sudut Istimewa

C. Rumus-rumus Identitas Trigonometri

D. Rumus- Rumus Trigonometri

E. Aturan Trigonometri dalam Segitiga


B. Nilai Trigonometri untuk Sudut-sudut Istimewa

C. Rumus-rumus Identitas Trigonometri

D. Rumus- Rumus Trigonometri

E. Aturan Trigonometri dalam Segitiga

RUMUS PELUANG
) Permutasi
Permutasi adalah susunan unsur-unsur yang berbeda dalam urutan tertentu. Pada permutasi urutan diperhatikan sehingga
Permutasi k unsur dari n unsur
adalah semua urutan yang berbeda yang mungkin dari k unsur yang diambil dari n unsur yang berbeda. Banyak permutasi k unsur dari n unsur ditulis
atau
.
Permutasi siklis (melingkar) dari n unsur adalah (n-1) !
Cara cepat mengerjakan soal permutasi
Permutasi adalah susunan unsur-unsur yang berbeda dalam urutan tertentu. Pada permutasi urutan diperhatikan sehingga

Permutasi k unsur dari n unsur



Permutasi siklis (melingkar) dari n unsur adalah (n-1) !
Cara cepat mengerjakan soal permutasi
dengan penulisan nPk, hitung 10P4
kita langsung tulis 4 angka dari 10 mundur, yaitu 10.9.8.7
jadi 10P4 = 10x9x8x7 berapa itu? hitung sendiri
Contoh permutasi siklis :
Suatu keluarga yang terdiri atas 6 orang duduk mengelilingi sebuah meja makan yang berbentuk lingkaran. Berapa banyak cara agar mereka dapat duduk mengelilingi meja makan dengan cara yang berbeda?
Jawab :
Banyaknya cara agar 6 orang dapat duduk mengelilingi meja makan dengan urutan yang berbeda sama dengan banyak permutasi siklis (melingkar) 6 unsur yaitu :
2) Kombinasi
Kombinasi adalah susunan unsur-unsur dengan tidak memperhatikan urutannya. Pada kombinasi AB = BA. Dari suatu himpunan dengan n unsur dapat disusun himpunan bagiannya dengan untuk
Setiap himpunan bagian dengan k unsur dari himpunan dengan unsur n disebut kombinasi k unsur dari n yang dilambangkan dengan , 
Kombinasi adalah susunan unsur-unsur dengan tidak memperhatikan urutannya. Pada kombinasi AB = BA. Dari suatu himpunan dengan n unsur dapat disusun himpunan bagiannya dengan untuk


Contoh :
Diketahui himpunan
.
Tentukan banyak himpunan bagian dari himpunan A yang memiliki 2 unsur!
Jawab :

Banyak himpunan bagian dari A yang memiliki 2 unsur adalah C (6, 2).
Diketahui himpunan

Tentukan banyak himpunan bagian dari himpunan A yang memiliki 2 unsur!
Jawab :

Banyak himpunan bagian dari A yang memiliki 2 unsur adalah C (6, 2).
dengan penulisan nCk, hitung 10C4
kita langsung tulis 4 angka dari 10 mundur lalu dibagi 4!, yaitu 10.9.8.7 dibagi 4.3.2.1
jadi 10C4 = 10x9x8x7 / 4x3x2x1 berapa itu? hitung sendiri
Ohya jika ditanya 10C6 maka sama dengan 10C4, ingat 10C6=10C4. contoh lainnya
20C5=20C15
3C2=3C1
100C97=100C3
melihat polanya? hehe semoga bermanfaat!
Peluang Matematika
1. Pengertian Ruang Sampel dan Kejadian
Himpunan S dari semua kejadian atau peristiwa yang mungkin mucul dari suatu percobaan disebut ruang sampel. Kejadian khusus atau suatu unsur dari S disebut titik sampel atau sampel. Suatu kejadian A adalah suatu himpunan bagian dari ruang sampel S.
Himpunan S dari semua kejadian atau peristiwa yang mungkin mucul dari suatu percobaan disebut ruang sampel. Kejadian khusus atau suatu unsur dari S disebut titik sampel atau sampel. Suatu kejadian A adalah suatu himpunan bagian dari ruang sampel S.
Contoh:
Diberikan percobaan pelemparan 3 mata uang logam sekaligus 1 kali, yang masing-masing memiliki sisi angka ( A ) dan gambar ( G ). Jika P adalah kejadian muncul dua angka, tentukan S, P (kejadian)!
Jawab :
S = { AAA, AAG, AGA, GAA, GAG, AGG, GGA, GGG}
P = {AAG, AGA, GAA}
2. Pengertian Peluang Suatu Kejadian
Pada suatu percobaan terdapat n hasil yang mungkin dan masing-masing berkesempatan sama untuk muncul. Jika dari hasil percobaan ini terdapat k hasil yang merupakan kejadian A, maka peluang kejadian A ditulis P ( A ) ditentukan dengan rumus :
Pada suatu percobaan terdapat n hasil yang mungkin dan masing-masing berkesempatan sama untuk muncul. Jika dari hasil percobaan ini terdapat k hasil yang merupakan kejadian A, maka peluang kejadian A ditulis P ( A ) ditentukan dengan rumus :

Contoh :
Pada percobaan pelemparan sebuah dadu, tentukanlah peluang percobaan kejadian muncul bilangan genap!
Jawab : S = { 1, 2, 3, 4, 5, 6} maka n ( S ) = 6
Misalkan A adalah kejadian muncul bilangan genap, maka:
A = {2, 4, 6} dan n ( A ) = 3
3. Kisaran Nilai Peluang Matematika
Misalkan A adalah sebarang kejadian pada ruang sampel S dengan n ( S ) = n, n ( A ) = k dan
Jadi, peluang suatu kejadian terletak pada interval tertutup [0,1]. Suatu kejadian yang peluangnya nol dinamakan kejadian mustahil dan kejadian yang peluangnya 1 dinamakan kejadian pasti.
Misalkan A adalah sebarang kejadian pada ruang sampel S dengan n ( S ) = n, n ( A ) = k dan

Jadi, peluang suatu kejadian terletak pada interval tertutup [0,1]. Suatu kejadian yang peluangnya nol dinamakan kejadian mustahil dan kejadian yang peluangnya 1 dinamakan kejadian pasti.
4. Frekuensi Harapan Suatu Kejadian
Jika A adalah suatu kejadian pada frekuensi ruang sampel S dengan peluang P ( A ), maka frekuensi harapan kejadian A dari n kali percobaan adalah n x P( A ).
Jika A adalah suatu kejadian pada frekuensi ruang sampel S dengan peluang P ( A ), maka frekuensi harapan kejadian A dari n kali percobaan adalah n x P( A ).
Contoh :
Bila sebuah dadu dilempar 720 kali, berapakah frekuensi harapan dari munculnya mata dadu 1? Jawab :
Pada pelemparan dadu 1 kali, S = { 1, 2, 3, 4, 5, 6 } maka n (S) = 6.
Misalkan A adalah kejadian munculnya mata dadu 1, maka:
A = { 1 } dan n ( A ) sehingga :
Frekuensi harapan munculnya mata dadu 1 adalah
5. Peluang Komplemen Suatu Kejadian
Misalkan S adalah ruang sampel dengan n ( S ) = n, A adalah kejadian pada ruang sampel S, dengan n ( A ) = k dan Ac adalah komplemen kejadian A, maka nilai n (Ac) = n – k, sehingga :

Jadi, jika peluang hasil dari suatu percobaan adalah P, maka peluang hasil itu tidak terjadi adalah (1 – P).
Misalkan S adalah ruang sampel dengan n ( S ) = n, A adalah kejadian pada ruang sampel S, dengan n ( A ) = k dan Ac adalah komplemen kejadian A, maka nilai n (Ac) = n – k, sehingga :

Jadi, jika peluang hasil dari suatu percobaan adalah P, maka peluang hasil itu tidak terjadi adalah (1 – P).
Peluang Kejadian Majemuk
Contoh :
Pada pelemparan sebuah dadu, A adalah kejadian munculnya bilangan komposit dan B adalah kejadian muncul bilangan genap. Carilah peluang kejadian A atau B!
Jawab :
2. Kejadian-kejadian Saling Lepas
Untuk setiap kejadian berlaku
Jika
. Sehingga
Dalam kasus ini, A dan B disebut dua kejadian saling lepas.
Untuk setiap kejadian berlaku



3. Kejadian Bersyarat
Jika P (B) adalah peluang kejadian B, maka P (A|B) didefinisikan sebagai peluang kejadian A dengan syarat B telah terjadi. Jika
adalah peluang terjadinya A dan B, maka
Dalam kasus ini, dua kejadian tersebut tidak saling bebas.
Jika P (B) adalah peluang kejadian B, maka P (A|B) didefinisikan sebagai peluang kejadian A dengan syarat B telah terjadi. Jika


4. Teorema Bayes
Teorema Bayes(1720 – 1763) mengemukakan hubungan antara P (A|B) dengan P ( B|A ) dalam teorema berikut ini :
Teorema Bayes(1720 – 1763) mengemukakan hubungan antara P (A|B) dengan P ( B|A ) dalam teorema berikut ini :

5. Kejadian saling bebas Stokhastik
(i) Misalkan A dan B adalah kejadian – kejadian pada ruang sampel S, A dan B disebut dua kejadian saling bebas stokhastik apabila kemunculan salah satu tidak dipengaruhi kemunculan yang lainnya atau : P (A | B) = P (A), sehingga:

(i) Misalkan A dan B adalah kejadian – kejadian pada ruang sampel S, A dan B disebut dua kejadian saling bebas stokhastik apabila kemunculan salah satu tidak dipengaruhi kemunculan yang lainnya atau : P (A | B) = P (A), sehingga:

Sebaran Peluang
1. Pengertian Peubah acak dan Sebaran Peluang.
Peubah acak X adalah fungsi dari suatu sampel S ke bilangan real R. Jika X adalah peubah acak pada ruang sampel S denga X (S) merupakan himpunan berhingga, peubah acak X dinamakan peubah acak diskrit. Jika Y adalah peubah acak pada ruang sampel S dengan Y(S) merupakan interval, peubah acak Y disebut peubah acak kontinu. Jika X adalah fungsi dari sampel S ke himpunan bilangan real R, untuk setiap
dan setiap
maka:

Peubah acak X adalah fungsi dari suatu sampel S ke bilangan real R. Jika X adalah peubah acak pada ruang sampel S denga X (S) merupakan himpunan berhingga, peubah acak X dinamakan peubah acak diskrit. Jika Y adalah peubah acak pada ruang sampel S dengan Y(S) merupakan interval, peubah acak Y disebut peubah acak kontinu. Jika X adalah fungsi dari sampel S ke himpunan bilangan real R, untuk setiap



Misalkan X adalah peubah acak diskrit pada ruang sampel S, fungsi masa peluang disingkat sebaran peluang dari X adalah fungsi f dari R yang ditentukan dengan rumus berikut :


2. Sebaran Binom
Sebaran Binom atau Distribusi Binomial dinyatakan dengan rumus sebagai berikut :
Sebaran Binom atau Distribusi Binomial dinyatakan dengan rumus sebagai berikut :

Dengan P sebagai parameter dan

Rumus ini dinyatakan sebagai:

Dengan P sebagai parameter dan

P = Peluang sukses
n = Banyak percobaan
x = Muncul sukses
n-x = Muncul gagal
n = Banyak percobaan
x = Muncul sukses
n-x = Muncul gagal
0 comments:
Post a Comment